Unlocking On-Policy
Distillation for Any Model Family

1. Cross-tokenizer sequence alignment 2. Logprob merging

e O © O CHue

oo
C
00C
(

oo

- N — — O
[o 1 2 3 4 5 @)

Apply on-policy distillation to models from different families

AUTHORS AFFILIATION PUBLISHED

, , , Oct. 29, 2025

Introduction

On-policy distillation is a highly effective strategy for compressing LLMs, as recently highlighted
by The technique trains a small “student” model by
transferring knowledge from a high-performing “teacher” model’s probability distribution. This
allows the student to emulate the teacher’s task performance, while significantly reducing size

and latency.

In this blog post, we introduce General On-Policy Logit Distillation (GOLD), our method for
extending on-policy distillation to address a fundamental weakness: the requirement that the
teacher and student models must share the same tokenizer vocabulary.

Building on Universal Logit Distillation (ULD) (), GOLD is highly effective for

complex, multi-step reasoning tasks, such as math. Our results show GOLD performs better

https://huggingface.co/cmpatino
https://huggingface.co/kashif
https://huggingface.co/qgallouedec
https://huggingface.co/burtenshaw
https://huggingface.co/sergiopaniego
https://huggingface.co/reach-vb
https://huggingface.co/tfrere
https://huggingface.co/edbeeching
https://huggingface.co/lewtun
https://huggingface.co/lvwerra
https://huggingface.co/thomwolf
https://huggingface.co/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://huggingface.co/papers/2402.12030

than ULD and even GRPO.
Our key contributions are:

e Providing an open-source implementation of on-policy distillation methods in TRL (and
) and proving they work for multiple model combinations.

e Extending ULD to the on-policy setting, where we sample completions from the student and
align them to the teacher’s distribution.

¢ Implementing new sequence and vocabulary alignment methods that improve distillation
performance when the student and the teacher have different tokenizers.

With this foundation in place, let’s step back to review the broader landscape of knowledge
distillation methods - how on-policy approaches emerged, and why extending them beyond
shared tokenizers is critical.

Distillation Methods

Off-policy vs. on-policy distillation

There are two main type of distillation: off-policy and on-policy. Off-policy distillation trains a
student model on fixed data (typically the teacher’s precomputed logits or text completions),

while on-policy distillation involves the teacher providing feedback to the student’s own outputs.

Generalised Knowledge Distillation (GKD) () unifies these approaches under
a common framework by supporting a range of loss functions that enable training on both static
teacher data and trajectories generated by the student. The GKD paper shows that on-policy

distillation typically outperforms off-policy methods: a result we confirm later in this post.

On-policy distillation’s advantage is twofold. First, as the student model improves, its
generations create progressively higher-quality training data, forming a positive feedback loop.
Second, this “context alignment” forces the student to learn from the same types of errors and
successes it will encounter during inference, rather than from completions generated only by
the teacher.

GKD controls this on-policy vs. off-policy data mixture via the A parameter, where A\ = 1 is fully
on-policy and A = 0 is fully offline as shown in the equation below

Lokp = (1 — /\)ESD + Aop

https://huggingface.co/docs/trl/en/gkd_trainer
https://huggingface.co/docs/trl/main/en/gold_trainer
https://huggingface.co/papers/2306.13649

where Lgp is the supervised distillation (SD) that leverages off-policy generations from the

teacher and Lo p is the on-policy distillation (OD) using student generations and feedback from

the teacher’s logits
When compared to RL, GKD also has two main benefits:

1. We don’t need to rely on a reward function that gives sparse feedback

2. The method works for small models which initially have low performance in the task we’re

trying to optimise for.

The reward function requires either a verifiable task or training a reward model to score the
completion and only gives feedback about the outcome. There is no explicit information about

which part of the process were correct and which require adjustments.

On-policy distillation overcomes this limitation by providing feedback from a strong teacher at
the token level. This approach is especially effective for smaller models, as demonstrated in
the Qwen3 () results below, where on-policy distillation outperforms RL at a
fraction of the compute budget:

Method AIME24 AIME'25 MATH500 HiveCodeBench MMLU GPQA | GPU

vb -Redux -Diamond | Hours
Off-policy Distillation 55.0 (90.0) 42.8 (83.3) 92.4 42.0 86.4 55.6 -
+ Reinforcement Learning 67.6 (90.0) 55.5 (83.3) 94.8 52.9 86.9 61.3 17,920
+ On-policy Distillation ~ 74.4 (93.3) 65.5(86.7) 97.0 60.3 88.3 63.3 1,800

While GKD establishes a strong foundation for on-policy training, it assumes both models share

a tokenizer, a practical constraint we’ll now address through Universal Logit Distillation (ULD).

Universal logit distillation

The main limitation with all on-policy distillation methods is that they assume the use of the
same tokenizer for both the student and the teacher. The current Al ecosystem spans different
model families such as , , , and , each with their own strengths and
shortcomings. Each model family, and even different versions within the same family, uses its
own tokenizer, so requiring a single tokenizer can be overly restrictive when selecting student-
teacher pairings. Recent work, such as Universal Logit Distillation (ULD), lifts the tokenizer
restriction by showing distillation can be performed without needing a perfect

alignment between teacher and student vocabularies, albeit in an offline setting.

https://huggingface.co/papers/2505.09388
https://huggingface.co/collections/HuggingFaceTB/smollm3
https://huggingface.co/collections/meta-llama/llama-32
https://huggingface.co/collections/Qwen/qwen3
https://huggingface.co/collections/google/gemma-3-release

Pair of Teacher/Student 0 Distillation process with logit distillation
model with different loss (L =L+ AXLyp)
vocabulary size.

3 : XT=[xT, o o XEy oy Xt] XS X3, e) XDy s Xows]
Teacher Model: Text corpus with 1 |x7]| e |x5]
Vocabulary: QT synthetic labels

: generated by
the Teacher
Model.
i
Student Model: Teacher soft labels. |QT]| Student soft labels. [Q5]
Vocabulary: O°
[@ Lyp

Zoom in Ly, term, tasked to align the probability distributions of the student model with those of the teacher at

the tth step.

N With paddin \
I Q7| = TQS = |gQ| (ULD Loss with Wasserstein distance °

1 Cxey<| T W= 21 1 po, (s [XSe) = dor (ko [X%) 0
Teacher soft labels. |QT| . 9or <t 1~ 4i=1 pﬂs Bs(i) <t an xeT(i) <t
Sorting and /\ °
Padding
with 0 0.62 (Kullback-Leibler divergence
s Kullback=Leibler divergence
N !I Pos([X)=| :
\ 0.1 /

UNDEFINED
Student soft labels. | Q5|

[y

Figure 1: Previous work, ULD by Boizard et al. demonstrates offline distillation on student and teacher
models with unmatched tokenizers. GOLD extends their method to the on-policy setting and addresses two
weaknesses: token alignment in step 3 and logit alignment in step 4.

ULD showed that using distillation between models with different tokenizers introduces two key
challenges:

1. Sequence misalignment: tokenizers split text differently. As shown in Figure 2, Tokenizer A
might create a single “Hugging Face” token, while Tokenizer B creates two separate tokens.

2. Vocabulary misalignment: the same token string receives different IDs. In Figure 1,
“awesome!” is ID=2 in Tokenizer A but ID=0 in Tokenizer B.

As shown in the figure below, this token ID mismatch results in different token sequences for
the exact same text, where “Hugging Face is awesome!” corresponds to [3, 1, 2] for Tokenizer A
and [2, 3, 1, O] for Tokenizer B. ULD handles these issues by truncating sequences to the
minimum length and by sorting and padding the smaller softmax vector to align vocabularies.

Tokenized Text: "Hugg‘mg Foce is awesome!"

Sequence Dimension Sequence Dimension

S Sy
g -

A _ | Cod;ng N[—! l_. - | D wesomel
) J O awesowme! D l_ i/ ; Hugging
VO Oeeeee 20

v | _J \ ‘ l‘ﬁk'mg

Vocab Dimension
Vocab Dimension

Tokenizer 4 Tokenizer B

Figure 2: Diagram of sequence and vocabulary misalignments caused by differences between two
tokenizers. Tokenizer A has fewer elements in its vocabulary and different token IDs when compared to
tokenizer B. The differences cause the same text ("Hugging Face is awesome!") to be represented by

token ID sequences with different lengths and elements.

ULD lifts the tokenizer restriction but remains limited to offline setups. Next, we introduce our
core contribution, General On-Policy Logit Distillation (GOLD), which extends ULD into the on-
policy setting with improved alignment techniques.

General On-Policy Logit Distillation (GOLD)

While Universal Logit Distillation (ULD) allows training models with different tokenizers, its
methods for sequence and vocabulary alignment have limitations. We developed General On-
Policy Logit Distillation (GOLD), an algorithm that extends ULD by introducing improved
vocabulary alignment techniques.

Sequence Alignment

The first limitation we address is ULD’s sequence alignment, which simply truncates sequences
to the minimum tokenized length. This simple approach causes two problems:

1. It leads to information loss at the end of the text.

2. It can misalign tokens, causing the distillation of tokens with different semantic meanings at
the same sequence index.

This alignment error worsens as tokenization differences increase because a single mismatch

at the start of a sequence can propagate and create a cascading semantic error throughout the
text.

Instead of truncating, our method identifies the token merges required to equalise the
sequence lengths for both tokenizers. We then merge the probabilities at the corresponding

positions by multiplying the marginal distribution by scalar conditional probabilities of the actual
continuation tokens.

We perform the token merge through scalar multiplication to leverage the autoregressive nature
of LLM sampling. Following the example in Figure 3, we want to merge “Hugging” and ” Face”
into one token for the sequence in blue. Using the conditional probabilities and the product

rule =, we can merge the probabilities and guarantee sequence alignment regardless of
tokenizer discrepancies in the sequence dimension.

Figure 3: Diagram highlighting the differences between ULD and GOLD in the sequence alignment step.
Instead of truncating the sequence at the minimum sequence length, we first determine the merges that
result in an aligned sequence length between the two tokenizer. We then calculate the sum of the
logprobs for the merged token position to get a unified vector with the token distribution for that position

in the sequence.

Having resolved sequence mismatches through token merging, we now turn to vocabulary

alignment, ensuring logits are comparable even when token IDs differ.

Vocabulary Alignment

Our second extension improves the alignment in the vocabulary dimension by replacing the
sorting operation with an operation that leverages a potential one-to-one mapping between the
tokenizers. ULD assumes that we cannot map any token between tokenizers, so it performs a
sorting operation in the softmax dimension after padding the logits to have the same size. The
assumption behind this process is that the softmax distribution is the same, or at least similar,

under a different permutation of token IDs.

We find this assumption to be reasonable, but we can exploit tokens present in both
vocabularies with a different ID to avoid relying on sorting when there’s a direct mapping. For
example, we know that “awesome!” is present in both vocabularies in Figure 4, but the token
IDs differ. In GOLD’s approach, we find those mappings where the token exists in both
vocabularies and apply the GKD loss that assumes the same tokenizer. We fall back to the
sorting process from ULD for the items in the vocabulary without a perfect match, so that we
still consider those unmatched tokens during learning. GOLD’s loss is then the result of adding
Lk p from the tokens with one-to-one mappings and Lz, p without a mapping. We allow
defining the weights for each term our TRL implementation but include a default that worked
well in our experiments.

Lcorp(z,y) = wiLerxp +waLlyLp

Figure 4: Diagram highlighting the differences between ULD and GOLD for the vocabulary alignment. GOLD
tries to find 1:1 mapping between tokens in both tokenizers and applies the KL divergence loss from the
GKD method. We fallback to the ULD process for tokens without a 1:1 mapping. The final loss is a sum of

the two terms.

With GOLD’s design clarified, we’ll now examine how we evaluated it in practice, detailing our

experimental setup, tasks, and models.

Experimental Setup

Task Definition

We used a math game called Countdown (), where the objective is to reach

a target value using a group of numbers and four arithmetic operations (+, -, *, /). Additionally,

the model must provide the answer using a specific format because we set a strict parser that

considers the answer wrong if it can’t find the expected format. We only consider the answer as
correct if it fulfils all the following conditions:

¢ Only uses each number once.
e The equation given by the model results in the target.

* The answer is an equation enclosed in the <answer> </answer> tags.

Below is an example of the system and user prompts we pass to the model for the task.

5% Countdown-Task-GOLD
Subset (5)
all - 80k rows v
Split (1)
train - 80k rows v
Dataset
We sourced all the prompts from the dataset. Our full dataset

contains 80Kk training prompts and 10k testing prompts selected randomly. We then generated
responses from

the Qwen/Qwen2.5-7B-Instruct and Qwen/Qwen3-4B-Instruct-2507 teacher models,
including only the prompts that had the correct answers from the teachers. Our published
dataset contains 30.4k prompts for Qwen/Qwen2.5-7B-Instruct and 27.7k

for Qwen/Qwen3-4B-Instruct-2507 generations. We use the prompts in the training dataset
with 30.4k prompts for all the on-policy experiments because we use the student’s generations
instead of the teacher’s completions.

https://huggingface.co/papers/2404.03683
https://huggingface.co/HuggingFaceTB
https://huggingface.co/datasets/HuggingFaceTB/Countdown-Task-GOLD
https://huggingface.co/HuggingFaceTB
https://huggingface.co/HuggingFaceTB
https://huggingface.co/HuggingFaceTB
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4

& Countdown-Task-GOLD

Subset (5)

verified_Qwen3-4B-Instruct-2507 - 27.7k rows v

Split (1)

train - 27.7k rows v
Models Used

To test the effects of model size, performance, and token similarity on KD, we established
several student-teacher setups. The teachers were all Qwen models of varying sizes, while the
students were from three different families: Qwen, Llama, and Gemma. This created a
significant performance gap for distillation: all student models had a baseline Countdown score
below 0.08, whereas the teachers’ scores ranged from 0.35 to 0.76.

Model Type Model ID Countdown Score
Student meta-llama/Llama-3.2-1B-Instruct 0.016
Student Qwen/Qwen2.5-1.5B-Instruct 0.076
Student google/gemma-3-1b-it 0.023
Teacher Qwen/Qwen2.5-7B-Instruct 0.3555
Teacher Qwen/Qwen3-4B-Instruct-2507 0.7145

Tokenizer Similarity

We hypothesized that GOLD’s performance would correlate with vocabulary similarity. To
quantify this, we defined a tokenizer similarity metric using the Jaccard index (Intersection over
Union, or loU). In this context, the “intersection” is the count of tokens that can be matched
between the two vocabularies, while the “union” is the total count of unique tokens across both.

Tables 1 and 2 below show the difference in tokenizer similarity when we enforce the same
token IDs (first table) compared to when we match different token IDs when they correspond to
the same token (second table).

The meta-llama/Llama-3.2-1B-Instruct and google/gemma-3-1b-it tokenizers have O
similarity with all the teachers in the first case, but we increase it to 0.64 and 0.063 in the

second case, respectively.

https://huggingface.co/HuggingFaceTB
https://huggingface.co/datasets/HuggingFaceTB/Countdown-Task-GOLD
https://huggingface.co/HuggingFaceTB
https://huggingface.co/HuggingFaceTB
https://huggingface.co/HuggingFaceTB

The tables also show that the tokenizer between Qwen2.5 and Qwen3 versions differs by only a
few tokens. In fact, the only difference between the two tokenizers is that Qwen3 is the same
tokenizer as Qwen2.5 with four additional tokens

('<think>', '<tool_response>', '</tool_response>', '</think>"') . Since the
tokenizer for Qwen3 fully contains the tokenizer from Qwen2.5, we can treat the two tokenizers

as equivalent for our experiments.

Table 1: Strict Matching

Student Model Qwen/Qwen2.5-7B-Instruct = Qwen/Qwen2.5-32B-Instruct = Qw:
meta-llama/Llama-3.2-1B-Instruct O 0 0
google/gemma-3-1b-it 0 0 0
Qwen/Qwen2.5-1.5B-Instruct 1.0 1.0 0.8

Table 2: Token Mapping

Student Model Qwen/Qwen2.5-7B-Instruct = Qwen/Qwen2.5-32B-Instruct = Qw:
meta-llama/Llama-3.2-1B-Instruct 0.64 0.64 0.€
google/gemma-3-1b-it 0.063 0.063 0.C
Qwen/Qwen2.5-1.5B-Instruct 1.0 1.0 0.9

Experiments

GKD with the Same Tokenizer

Our first goal was to validate our GKD implementation by comparing our results with those
reported by Agarwal et al. (). We focused on comparing the performance of
combining on-policy and off-policy learning through ablations of five different A values, as
shown in Figure 5. We used Qwen/Qwen3-4B-Instruct-2507 as a teacher and
Qwen/Qwen2.5-1.5B-Instruct as a student. For the offline learning, we generated
completions to the prompts using Qwen/Qwen3-4B-Instruct-2507 beforehand to speed up
the training process. We set the temperature y = 1 for the student generations and used the

forward KL divergence (8 = 0) “in Lop.

https://huggingface.co/papers/2306.13649

The results confirm that using at least some degree of on-policy training outperforms the SFT
setup. We also see a trend of better performance as we increase \, with fully on-policy
achieving the best overall performance. This behavior confirms the hypothesis that fully on-
policy training is better than training with offline data when using models with the same
tokenizer.

Lambda View

@10 @075 @o5 @025 (@00 --- Teacher Leainclcunel:

0.8 —
0.7

0.6 s
0.5 /

0.4

Pass Rate

0.3
0.2

0.1-

T T T T
0 1,000 2,000 3,000 4,000
Training Step

Figure 5: Ablation of the lambda parameter, that controls the blend of the on-policy loss (lambda=1.0) and
supervised loss (lambda=0.0).

Distilled teacher knowledge

After testing multiple configurations, we achieved a setup that consistently distilled over 80% of
a teacher’s performance on the Countdown task. This high distillation ratio held true across
multiple teacher models of different sizes (as shown in Figure 6), validating our on-policy GKD

implementation.

These results underscore a fundamental point: a student’s performance is effectively capped by
the teacher’s capabilities. This highlights the importance of selecting a strong teacher model to

maximize student performance.

Teacher View

@ Qwen3-4B-Instruct-2507 (@ Qwen2.5-7B-Instruct —--- Teacher Leaming Curve v
0.8+
0.7 -
° ° O

0.6 /.

% 05 = ()

& 04

@

o 0.3 °) ®

. o
0.2+ /
014
0.0 ! T T T T 1
0 1,000 2,000 3,000 4,000

Training Step

Figure 6: Distillation is stable at different model scales, with Qwen/Qwen2.5-1.5B-Instruct as the student
and either Qwen/Qwen2.5-7B-Instruct or Qwen/Qwen3-4B-Instruct-2507 as the teacher. In both cases we
are able to recover over 80% of the teacher’s performance, which points to the importance of choosing a
strong teacher to achieve the best results in KD tasks.

These results validate our GKD implementation. The next question is: can on-policy distillation
still succeed when teacher and student use different tokenizers?

On-Policy distillation works with different tokenizers

While our GKD implementation recovered over 80% of the teacher’s performance, it was limited
to teacher-student pairs with matching tokenizers. Our next experiments addressed this

limitation by testing distillation across different model families, which use different tokenizers.

This scenario requires methods that can handle vocabulary and sequence misalignments. We
therefore compared the baseline ULD method with our proposed GOLD method to evaluate their
effectiveness.

Tokenizer similarity impacts performance

Tokenizer similarity dictates the extent to which sequence and vocabulary alighment are
required. We hypothesized that lower similarity would correlate with lower task performance,
and our results confirm this: GOLD’s performance on the Countdown task declines as tokenizer
similarity decreases.

This decline is an expected trade-off, as the alignment process for divergent vocabularies
inevitably introduces some noise. However, even with this effect, we will show that GOLD (at

0.64 similarity) still outperforms RL methods.

Model Performance on Countdown = Similarity with Qwen3-4B-Instruct-:
Qwen/Qwen2.5-1.5B-Instruct 0.6515 0.999974
meta-llama/Llama-3.2-1B-Instruct 0.4235 0.64
google/gemma-3-1b-it 0.0305 0.063

GOLD outperforms ULD

We tested our extensions by training meta-llama/Llama-3.2-1B-Instruct (student) with
Qwen/Qwen3-4B-Instruct-2507 (teacher). The results in Figure 7 show a substantial
performance difference between the methods:

e GOLD improved the student’s initial performance by 25% and recovered 60% of the teacher’s
performance.

e ULD improved the student by only 5% and recovered just 10% of the teacher’s performance.

This difference is attributable to GOLD’s improved alignment techniques. This specific student-
teacher pair had O similarity under a strict ID match, but our token content matching (from
Figure 4) increased this to 0.64. This, combined with our improved sequence alignment (from
Figure 3), enabled effective knowledge transfer where ULD failed and produced results

competitive with RL methods.

Method View

(@ GOLD (@ ULD --- Teacher Learning Curve w

0.8 —
0.7
0.6
0.5

0.4 - °
03] ./

0.2

Pass Rate

0.1

0.0% : ; . .
0 1,000 2,000 3,000 4,000

. ° ° ° °

Training Step

Figure 7: GOLD performs better than ULD when distilling Qwen/Qwen3-4B-Instruct-2507 into meta-
llama/Llama-3.2-1B-Instruct. The plot also shows the long warmup in both cases because the model

performance has a noticeable improvement only after the 1000th step.

Having shown that GOLD handles tokenizer differences effectively, we now benchmark it against
an RL algorithm, GRPO, test its efficiency and performance.

On-policy distillation outperforms GRPO

On-policy distillation uses student-generated completions to progressively update the training
data. Having established this approach is superior to offline methods like SFT (when tokenizers
match), we next compared it to other on-policy methods, specifically Group Relative Policy
Optimization (GRPO). GRPO is an RL method introduced in the DeepSeek-Math paper

() and later popularized by the Deepseek R1 release

().

We followed of how to train GRPO for the Countdown task and
compared it to the performance of KD distillation. Our reward function was a sum of three

components:

1. Format: +1 if the response included the tags correctly.

https://huggingface.co/papers/2402.03300
https://huggingface.co/papers/2501.12948
https://www.philschmid.de/mini-deepseek-r1

2. Following Rules: +1 if the model followed the rule of using the numbers provided in the
prompt and only using each number once.

3. Correct Equation: +1 if the equation is correct.

The implementation in the tutorial joined the Format and Following Rules reward into a single
function, but we found that the results were better when splitting the conditions into two
separate reward functions.

Figure 4 shows our results for the scenario with the same tokenizer (above) and different
tokenizers (below). For the same tokenizer scenario, we see a that KD outperforms GRPO by a
2x performance! The scenario with different tokenizers has a narrower performance gap
between KD and GRPO, but still GOLD performs 20% better than GRPO. These results align with

, Where on-policy distillation performs similarly or better than RL.
However, our results go one step further because we perform better than RL using a student-
teacher pairing from different model families and with different tokenizers.

https://huggingface.co/papers/2505.09388

Method
@ GKD @ GOLD (7] GRPO Teacher

Qwen/Qwen2.5-1.5B-Instruct

0.8 —
0.7

0.6 /0
05 =)

0.4+

Pass Rate

0.3
0.2

0.1-

0.0 ! T T T T 1
0 1,000 2,000 3,000 4,000 5,000

Training Step

meta-llamal/Llama-3.2-1B-Instruct

0.8
0.7
0.6
0.5

0.4 ®
03 — ./

0.2

Pass Rate

0.1

0.0 T T T T 1
0 1,000 2,000 3,000 4,000 5,000

Training Step

Figure 8: GKD and GOLD perform better than GRPO when training meta-llama/Llama-3.2-1B-Instruct. The
gains from distillation are more clear in the GKD because we are able to distill the teacher better, but we
still perform better than GRPO with our GOLD approach.

Beyond mathematical reasoning, on-policy distillation also applies to domain-specific fine-

tuning. Let’s explore how the same ideas improve personalization and task adaptation.

Distillation for Domain

In the , the authors distilled a language more for personalisation.
They improved a model on an internal domain dataset and evaluation benchmark
and restored it’s ability on IFEval, the instruction following benchmark. This is useful because
models can often lose their instruction following abilities during domain specific fine-tuning with
SFT. Thinking Machines achieved this by interleaving phases on continued pre-training on
domain specific data (mid-training) and On-policy Distillation with a high quality chat dataset,
allenai/tulu-3-sft-mixture . As the table below shows, chat performance is restored

following on-policy distillation.

To make these results reproducible, we’ll now walk through how to implement the full process

using open-source datasets and the TRL framework.

Reproducing in TRL

We can reproduce the above process in TRL and share the implementation using open models

and datasets!

We’ve made some adaptations from the Thinking Machine experiment to use datasets and
benchmarks that are available, instead of the “internal document dataset and benchmark”:

e The open-ri1/codeforces dataset as a domain specific dataset.

https://thinkingmachines.ai/blog/on-policy-distillation/#distillation-for-personalization
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://huggingface.co/datasets/open-r1/codeforces

e The livecodebench evaluation benchmark to align with the Codeforces competitive coding
task above.

e The same allenai/tulu-3-sft-mixture dataset and the IFEVal Benchmark.

e The Qwen/Qwen3-4B-Instruct-2507 model.

Supervised Fine-Tuning on open-ri/codeforces

We fine-tuned the Qwen/Qwen3-4B-Instruct-2507 model on open-ri/codeforces with
SFTTrainer which improved performance by 35.1% to 40.3% on livecodebench. However, the

model’s IFEval score fell from 83.4% to 79.5%, which is common in domain specific fine-tuning.

Note that we trained this model for 1k steps and stopped early. For a more complete study of
fine-tuning for advanced reasoning tasks, check out this

Generalized Knowledge Distillation on allenai/tulu-3-sft-mixture

Starting from the above checkpoint from SFT, we used the GKDTrainer with the
allenai/tulu-3-sft-mixture dataset which improved performance on IFEval 79.5% to

82.8% whilst maintaining an approximate livecodebench score of 39.8%.

Model IFEval LCB
Qwen3-4B 83.4 35.1
Qwen3-4B + Codeforces SFT 79.48 40.29
Qwen3-4B + Codeforces SFT + Tulu3 GKD 82.8 39.8

Results from first finetuning on Codeforces data to improve LCB and then recovering performance on
IFEval by distilling the initial Qwen3-4B model.

Building it for yourself

If you want to try out knowledge distillation for yourself on your own use case, or a dataset from
the hub, the recipe is available below.

https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/docs/trl/en/sft_trainer
https://huggingface.co/blog/open-r1/update-3
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://huggingface.co/docs/trl/en/gkd_trainer
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture

SFT Recipe v

Distillation Recipe v

Conclusion

In this post, we introduced General On-Policy Logit Distillation (GOLD), a new method that
enables effective on-policy knowledge distillation between models, even when the teacher and
student do not share the same tokenizer vocabulary. This overcomes a significant limitation of
existing on-policy methods like GKD, which require matched tokenizers.

GOLD builds upon the offline ULD method but extends it to the on-policy setting and, critically,
addresses its two main weaknesses. First, we replace ULD’s naive sequence truncation with a
token-merging strategy that multiplies marginal distributions by scalar conditional probabilities.
Second, we implement a hybrid vocabulary alighment method that uses a direct-mapping loss

for shared tokens and falls back to ULD’s sorting method only for unmatched tokens.

Our experiments on the Countdown math task confirm GOLD’s advantages. We showed that
GOLD significantly outperforms the original offline ULD implementation, recovering 60% of the
teacher’s performance versus ULD’s 10%. Furthermore, GOLD proved superior to other on-policy
methods, outperforming a supervised fine-tuning baseline by 15% and a GRPO baseline by 2x.
Even in the difficult cross-tokenizer scenario, GOLD still outperformed GRPO by 20%.

These findings demonstrate that GOLD is a powerful and flexible technique for model
distillation. It provides a path to distill knowledge from any high-performing teacher to any
student, regardless of their tokenizer, offering a more effective and token-efficient alternative to

reinforcement learning.

Citation

For attribution in academic contexts, please cite this work as

Carlos Miguel Patifio, Kashif Rasul, Quentin Gallouédec, Ben Burtenshaw, Sergio Paniego, Vaibhav
Srivastav, Thibaud Frere, Ed Beeching, Lewis Tunstall, Leandro von Werra, Thomas Wolf (2025).
"Unlocking On-Policy Distillation for Any Model Family".

BibTeX citation

@misc{patifo2025_unlocking_on_policy distillation_for_any_model_ family,

title={Unlocking On-Policy Distillation for Any Model Family},

author={Carlos Miguel Patifio and Kashif Rasul and Quentin Gallouédec and Ben Burtenshaw and
Sergio Paniego and Vaibhav Srivastav and Thibaud Frere and Ed Beeching and Lewis Tunstall and
Leandro von Werra and Thomas Wolf},

year={2025}%,

References
1. Agarwal, R., Vieillard, N., Zhou, Y., Stanczyk, P., Ramos, S., Geist, M., & Bachem, O. (2024). On-Policy Distillation of
Language Models: Learning from Self-Generated Mistakes. https://huggingface.co/papers/2306.13649 ™ back: 1,2

2. Boizard, N., Haddad, K. E., Hudelot, C., & Colombo, P. (2025). Towards Cross-Tokenizer Distillation: the Universal
Logit Distillation Loss for LLMs. https://huggingface.co/papers/2402.12030"

3. DeepSeek-Al, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., Zhang, X.,
Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., *** Zhang, Z. (2025). DeepSeek-R1: Incentivizing
Reasoning Capability in LLMs via Reinforcement Learning. https://huggingface.co/papers/2501.129481

4. Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma, A., & Goodman, N. D. (2024). Stream of Search (SoS):
Learning to Search in Language. https://huggingface.co/papers/2404.03683 ™

5. Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y. K., Wu, Y., & Guo, D. (2024).
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models.
https://huggingfaoe.co/papers/2402.033001

6. Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu, D., Zhou,
F., Huang, F., Hu, F., Ge, H., Wei, H., Lin, H., Tang, J., --* Qiu, Z. (2025). Qwen3 Technical Report.
https://huggingface.co/papers/2505.09388 T

Footnotes
1. The full GKD loss is then formally defined as:

Lekp = (1 = NE@y)~x)[Prsp@)] + Ao x[Eypy (o) [Drspip)]l-
/P
2. The details of why we can merge the probabilities using the chain rule. For the merged distribution at position i:

Prerged(y) = P(y |) x P(token; |) x P(token; | token;,x) x ... This correctly computes the joint

probability of the actual generated sequence while providing a reasonable approximation for counterfactual tokens.
/P

3. The ,3 parameter then controls the generalized Jensen-Shannon divergence between the student (S) and teacher (T)

distributions, calculated via the following loss summed over the sequence and averaged over the batch:
Djsp(s)(ps,pr) = B - DkL(ps|7) + (1 — B) - Dk (pr||7) where m = 8 - ps + (1 — B) - pr-

N

made with @ with research article template

https://huggingface.co/papers/2306.13649
https://huggingface.co/papers/2402.12030
https://huggingface.co/papers/2501.12948
https://huggingface.co/papers/2404.03683
https://huggingface.co/papers/2402.03300
https://huggingface.co/papers/2505.09388
https://huggingface.co/spaces/tfrere/research-article-template

